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Abstract - A coupled thermomechanical model to simulate solidification problems in casling is
presented. The model 1s formulated from a phenomenological point of view using a general isotropic
thermoelasto-plasticity theory. Generalized phase-change effects accounting for the different
thermomechanical behaviour of the solidifving material during its evolution from liquid to solid
have been considered. For this purpose, a phase-change function. plastic evolution equations and a
temperature-dependent constitutive law have been defined. Full thermomechanical effects as well
as variable thermal and mechanical boundary conditions are also taken into account.

Particular details concerning the numerical implementation of the model are given. where
special emphasis is devoted to the resulting highly non-linear fully coupled finite element equations.

The behaviour of this formulation is studied first in a simple quenching problem. Finally. a
cvlindrical casting test problem including phase-change phenomena. temperature-dependent consti-
tutive properties and contact effects is analysed. Numerical results are compared with laboratory
measurements.

I INTRODUCTION

The prediction of the full thermomechanical behaviour of bodies with thermal and mech-
anical temperature-dependent material properties is of great practical importance in many
engineering situations. In particular, a major issue is the formation of cracks due to induced
thermal stress fields in casting processes. Although an analytical investigation into thermal
stress development has been attempted by many researchers [see e.g. Cassenti and Annigeri
(1989): Malvern (1969): Ziegler (1983)], it has long been recognized that the use of
numerical methods 1s necessary to analyse complex realistic problems.

For this purpose. different thermomechanical tormulations with internal variables
governed by rate equations [see ¢.g. Coleman and Gurtin (1967) : Lubliner (1972) ; Lubliner
(1990)] have been proposed and successfully applied for the analysis of coupled elasto-
plastic problems by many researchers [i.e. see ¢.g. Argyris er af. (1981); Armero and Simo
(1992a.b) : Bruhns and Sluzalec (1989): Kleiber (1991): Simo (1991); Sluzalec (1988):
Smelser and Richmond (1988) : Wriggers and Miche (1992) ; Wriggers er af. (1989}]. Some
of these models have been used to simulate solidification processes [see ¢.g. Smelser and
Richmond (1988), Williams ¢z «/. (1990) and the references there listed]. Nevertheless, this
problem has many complex aspects that are usually difficult to deal with, such as:

e the equilibrium and energy equations are coupled. Consequently, a robust and efficient
numerical strategy 1s crucial for solving the highly non-linear finite element equations.

e aconstitutive model which can represent the liquid. mushy and solid phases of the casting
is necessary.,

e different kinds of materials are usually involved in solidification processes,

e thermal and mechanical changing boundary conditions must be taken into account. This
requires the consideration of a pressure. gap-dependent convection-radiation model and
a contact-friction formulation, respectively.

e latent heat effects introduce oscillations in the algorithms.

an accurate residual stress evaluation has to be performed.

e microstructural effects may be important.

4"



648 D Celentano ez al.

In this paper. a general phenomenological thermoelasto-plastic model taking into
account many of previous aspects is presented in Section 2. Furthermore, a thermo-
mechanical contact model, including a gap/pressure-dependent convection—radiation model
and a contact formulation, is also presented. As a first approach to the problem, infinitesimal
deformation will be assumed and friction effects will be neglected in this work.

In Section 3, the finite element formulation of the coupled thermomechanical model is
derived. Special attention is devoted to “non-standard” terms accounting for phase-change,
thermomechanical coupling and contact effects.

Two numerical examples are presented in Section 4. A study of the performance of
different solution strategies and the influence of the thermomechanical coupling terms when
solving the energy equation has been performed by means of a simple quenching example.
Finally. the model is validated in the analysis of a cylindrical casting test problem, for
which experimental results are available for comparison.

2. GOVERNING LOCAL EQUATIONS
2.1, General thermomechanical formulation

(a) Basic definitions. Let some open bounded domains Q,, < R"» (1 < 1y, < 3 and
i=1l..... fin,g,) be the reference (initial) configurations of some #,,, continuum thermo-
elasto-plastic bodies 4, (that may thermomechanically interact between themselves) with
material coordinates labelled by Xe€Q,, (all of them measured with respect to the same
reference coordinate system), I, = &Q,, their smooth boundaries respectively,and Y < R
be the time interval of analysis (1¢Y). Further, ¢, (,?): %, — R'~ denotes the con-
figurations of such bodies at time t and. as usual, Q, = Q, uT,. In the infinitesimal
displacement ‘strain context assumed here, the configurations ¢, at different times coincide,
respectively. with the reference ones. For simplicity in the notation, subscript () will be
dropped trom here onwards unless its use facilitates the description of the formulation.

In phase-change problems. the domain Q is usually decomposed into 7,, domains
(Q=09Q, with ph=1...., n,) bounded by n, moving phase-change boundaries I'%.
(p=1.....n,). n, being the number of phases or portions of macroscopical homogeneous
material [see e.g. Celentano (1994)]. The classical isothermal and non-isothermal phase-
change problems are depicted schematically in Fig. 1, where the subscripts s, m and | denote
solid. mushy and liquid phases. respectively. Once more, with the purpose of simplifying
the notation. indexes ph and p will be suppressed in the equations presented below.

A thermomechanical process involving phase-change phenomena can be described by
the following local form of the field equations

Fig. I Geometrie description of a non-linear heat conductor .4,,, for phase-change problems. (a)
Isothermal case ; (b) non-isothermal case.
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e equilibrium condition

V'6+p()B[.‘:0 II’lQX Y. (l)

e First Law of Thermodynamics or balance of energy

pow = —V q+per+oe:¢ InQxY, (2)

e Second Law of Thermodynamics, expressed by the Clausius—Duhem inequality

Loy = Pall—Po % +V- [(ﬂ >0 InQx7T, 3)

together with adequate boundary conditions
u=a inl,x7Y, 4)
en=t+t* inl,xT, 5)
T=T inI',xT. (6)
g'n=—g—g* inl xY, @)

initial conditions

uX. 0, o =u(X)=0 inQ, (8)
TX. ), -0 = To(X) inQ, )

and appropriate constitutive equations for w, o, n and q all defined in @ x Y.

These equations describe a quasi-static coupled thermomechanical initial boundary
value problem. Here, V = 0/éX is the gradient operator, a:Q x Y — R%m x R"%n is the
Cauchy stress second-rank tensor, p,: £ — R* is the density at the reference configuration
and B :Qx Y - R%n~ is the specific body force. Further, w:Qx Y — R is the specific
internal energy, q:Qx Y — R"~ is the heat flux vector, r:Q x Y — R is the specific heat
source, £:Q x Y — R"im x R"n 15 the infinitesimal strain second-rank tensor defined by the
usual kinematics relation [see e.g. Malvern (1969)] and u: Q x Y — R~ is the displacement
field. The superposed dot implies time derivative while the standard notation for the
multiplication of tensors is used [see e.g. Malvern (1969)]. Moreover, ineqn (3) y: Qx Y —
R is the specific internal entropy production rate and :Q x Y — R is the specific entropy.

In eqns (4) and (5) it is assumed that the displacement field u(X, 1) and the stress tensor
a(X, 1) are prescribed on parts of the boundary I', = R"%~~"' and I', = R%=~' respectively,
where n: 3Q — R"s~~" is the unit outward normal to the boundary, @: T, x Y — R"sn is the
prescribed displacement field, t: I, x Y — R"~ is the prescribed traction vector and
t*:T, x Y — R"n~ is the contact traction vector due to the fact that the 4, bodies may
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Fig. 2. Geometric description of two non-hnear thermoelastic-plastic bodies 4, and #4,,, that may
thermomechanically interact between themselves. (a) Mechanical boundary conditions : (b) thermal
boundary conditions.

come into contact between themsclves (see Scction 2.4). As usual, the conditions
FLul, =cQand I', AT, = 0 are assumed to hold (see Fig. 2).

Similarly with eqns (6) and (7). the absolute temperature field 7:Q x Y — R~ and the
heat flux vector q(X.r) are also prescribed on parts of the boundary I'; < Rm~' and
[, = R ' respectively, where 7:T',xY >R~ is the prescribed temperature field,
G:T,x Y — R is the prescribed normal heat flux and ¢*: T, x Y — R is the normal heat
flux due to convection-radiation phenomena (see Section 2.3). Once more, the following
conditions are considered (see Fig. 2): T, T, = Qand T, T, = 0.

(b) Basic constitutive relations. With the help of the Clausius-Duhem inequality (3)
and the definition of the specific Helmholiz free energy  [see e.g. Coleman and Gurtin
(1967) ; Malvern (1969) ; Ziegler (1983)].

Yo=e . Ty=0—nT inQxY. (10)

the constitutive relations for . ¢ and 5 can be established, where the superposed caret
serves to distinguish a state function from its repective value. In eqn (10),
4 Qx Y >R is the n,-dimensional (A =1...., iy 2t = 1) vector field of phenom-
enological internal state variables governed by rate equations with zero initial values [see
e.g. Lubliner (1972) ; Lubliner (1990)]. Such variables can be scalars or tensors. Moreover,
1t is important to note that e(X. 7). 2,( Y.7) and T(X.1) are assumed to be the independent
thermodynamic state vanables which determine .

The use of the Coleman method [see ¢.g. Coleman and Gurtin (1967) : Lubliner (1972)],
taking into account that & and 7 can be specitied arbitrarily in a given thermodynamic
state. i.e. if there are no internal constraints, leads to the following relations:

i

=6l T) = po o g
6=6(e2.7)=/p P (1)
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v

n="nle.a.T)= AT

(12)

Equation (11)is usually known as the isothermal stress strain relation [see e.g. Malvern
(1969)]. Lubliner (1972) has shown that, in order to establish unique constitutive equations,
Coleman’s relations (11) and (12) follow even for the definition of &, given by the plasticity
theory (see Section 2.2).

From eqns (10) and (12), the specific internal energy can be expressed in terms of v
as:

N

o=y T (13)

Finally, the well-known Fourier law is adopted forq:
q= —k-VT. (14)

where Kk is the conductivity second-rank tensor. This path independent way of defining q is
equivalent to that used by Simo (1991) in terms of a smooth convex heat flux potential
function.

(¢) Derived constitutive relations. Other important thermodynamic expressions related
to the behaviour of body 4 are:

C=—=p, o . 15

Ce P Ce® (e (15)
ce T

Ve = — - I RN 16

‘ ‘a, f ey (16)
co Ty

R T 17

b cT )‘(6< 7 a7

where C is the elastic tangent constitutive fourth-rank tensor (isothermal) [see e.g.
Malvern (1969)], y, are the plastic tangent constitutive variables (once more, they can be
scalars or tensors) [see Celentano (1994): Lubliner (1972)] and § is the tangent conju-
gate of the thermal dilatation second-rank tensor [see e.g. Lubliner (1990)]. The symbol
© indicates the appropriate multiplication according with the nature of each internal
variable a,.

In phase-change problems, the following general definition is adopted [see e.g. Celen-
tano (1994) ; Celentano ez al. (1993)]:

. T
«:—TL%—L%ﬂ). (18)
T T

where ¢: Qx Y — R* is the specific heat capacity, L is the specific latent heat (released in a
freezing problem or absorbed in a melting one) and /. is the “phase-change” function [see
e.g. Celentano (1994): Celentano er a/. (1993)]. In an isothermal phase-change problem
Joe = H(T—T,), with H being the Heaviside function and T,, the melting temperature (see
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Fig. 3). On the other hand, when the phase-change occurs in the range of temperatures
(T~ T)). fy = f with:

0 VT < T,
f(T)=<0<g(N <1l ;T,<VT<T, (19)
1 NT>T,.

where T, and T are the liquidus and solidus temperatures, respectively [see e.g. Celentano
et al. (1994)]. Function g(T') may be obtained using a microstructure model [see e.g. Thévoz
et al. (1989) and references therein]. However, from a macroscopical point of view assumed
in this paper, the simplest choice for g(T) is the linear one (see Fig. 3): g(T) = (T—T))/
(T,—T) VT, < T < T, It should be noted that the temperature derivative of the phase-
change function does not exist for certain temperatures. Nevertheless, as it will be shown
later, there is no need to evaluate such derivatives in the energy equation (20) [see e.g.
Celentano (1994) ; Celentano et al. (1994)].

A further generalization of eqn (18) takes place when two or more phase-changes
occur, i.e. n, = 2 [see e.g. Celentano (1994) ; Celentano et al. (1994)]. In this case, the term
L 0f,/T must be replaced by I | L, df,. /0T, where L; and j;,c, are the latent heat and
phase-change function associated with the jth phase-change. To facilitate the notation, the
simpler form of eqn (18) (i.e. n,. = 1) is retained [see e.g. Celentano (1994) ; Celentano et
al. (1994)].

(d) Energy equation and coupling terms. Under these considerations, the energy equa-
tion can be rewritten as

—~pocT—poLfnc =V q+por—TB:é+por’ = 0, (20)

where the last two terms in the left-hand-side of eqn (20) denote the thermomechanical
coupling terms [see e.g. Celentano (1994); Celentano et al. (1991); Celentano et al.
(1992a,b) ; Celentano er al. (1993)]: the first one is normally called the thermoelastic
coupling term [see e.g. Ziegler (1983)] while the second accounts for the thermoplastic
coupling term [see e.g. Celentano (1994)] and it is given by :

= (Tj_:ll - L) O . @1)

(e) Dissipative inequalities. If it is assumed that  and a, are independent of V7, and q
independent of a,, the following inequalities, both derived from equation (3), have to be
fulfilled [see e.g. Lubliner (1972) ; Malvern (1969) ; Ziegler (1983)] :

foc k foc 4&

—Y

T

a) b)

Fig. 3. Phase-change function for (a) isothermal case ; (b) non-isothermal case.
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¢
D= py ot O & <0, 22)
7%
th ]
D" = _q-VT <0, (23)

where DP and D' are defined as the plastic and thermal dissipations, respectively. Lubliner
(1972) has also shown that eqns (22) and (23) become the necessary and sufficient conditions
for the fulfilment of the Clausius—Duhem inequality (3). From eqn (22), it is clear that
q. = — Y /a, are the conjugate plastic variables of a,.

2.2. Thermoelasto-plastic model

(a) Basic definitions. In the context of rate-independent plasticity theory, the thermo-
plastic behaviour of the continuum is governed by a state yield function F(q,):R"~ - R
(assumed strictly convex and, for simplicity, defined in terms of a unique smooth function),
such that no plastic evolutions occur when F < 0. In accordance with the work of Celentano
(1994), a particular model takes place when the yield function is assumed to be of the form
F = F(0,%", T), where $*:Qx Y — R is the plastic hardening function [see €.g. Lubliner
(1972)). Now, the thermoelastic admissible domain (also assumed convex) E* is defined as
[see e.g. Simo (1991)]:

E* = {(6.6". T) e (R"m x R"m) x R x R*|F(a,%". T) < 0}, (24a)

and the thermoplastic domain 1s:
EP = {(6.4". T)e (R xR ) x Rx R™ |F(a.%".T) = 0} = JE*“. (24b)
Further, the principle of maximum plastic dissipation leads to an associate constitutive

model characterized by the plastic variables (&, = &, a, = 4P, a; = #”) with the following
evolution equations [see e.g. Armero and Simo (1992a.b)} :

&=/ (25)
co
%"p = H«,,rv/:. (26)
1 ¢F .,
= 27
"= T (27)

together with the load-unload Kuhn-Tucker conditions [see e.g. Armero and Simo
(1992a,b) ; Simo (1991)] 4 > 0, F < 0. AF = 0 and the consistency condition [see e.g. Armero
and Simo (1992a.,b); Simo (1991)] AF = 0, where £°: Q x Y — R%m x R™n js the plastic
strain second-rank tensor, #°:Qx Y — R is the plastic entropy and Hu»(T) :Qx YT > R is
the plastic hardening modulus given by :

Hgo = h,o(T)o: R, (28)

where h,(T): Qx Y - R is the plastic hardening coefficient and R = 0F/de is the flow
potential. It can be seen from eqns (26) and (28) that ? is defined in terms of " [see e.g.
Celentano er al. (1991); Celentano er al. (1992a.b); Celentano et al. (1993); Celentano
(1994)].

(b) Proposed specific free energy function. Restricting the analysis to the thermoelasto-
plastic isotropic response, the free energy ¥ is formulated as [see e.g. Armero and Simo
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(1992a.b) : Celentano (1994) : Celentano er af. (1991) ; Celentano et al. (1992a,b) ; Celentano
etal (1993)]:

U= Wole—i TV 4+ 0, (6" 0P T) + (7). (29)

where Y. ¢, and ¢, are the thermoelastic. thermoplastic and phase-change parts of ¥,
respectively. [t should be noted that eqn (29) is a partially decoupled form of the specific
free energy . Choosing the initial temperature as the reference one [see e.g. Celentano
(1994)]. the thermoelastic part . is written as:

. | |
Ve =Y le—€".T) = 5 A=) Dite—-e)— - [Pie—ePT—Ty)

~fy Pu

l T
Yy — (T =T+ - 6, (e—&)+N(T— To)—c*Tln?, (30)
0

the thermoplastic part is:

X 740
Wi =W (" 07 T) = — o P, 31
0
and the phase-change partis:
. 7
l//pc = l//p\(T) - = [ A)')L(B) do. (32)

In above. subscript 07" denotes the initial state of the different variables and superscript
s indicates secant thermomechanical properties [see e.g. Celentano (1994)]. The secant
constitutive tensor B can be defined in terms of the more usual secant thermal dilatation
second-rank tensor a3, as p° = C :a), with a, = aj;, 1, where «f, is the secant thermal
dilatation coefficient [see e.g. Malvern (1969); Ziegler (1983)]. A proposed constitutive
tensor C* will be given in Section 2(d) obtaining in this form a complete definition of .
Furthermore. A, is defined as [see e.g. Celentano (1994)] :

L ()

4 (T) =
SRR B R

de, (33)

where 6 is a dummy variable. The thermoelastic part . expressed by eqn (30) is a
generalization of the usual specific free energy definition given in the thermoelastic context
[see e.g. Malvern (1969); Ziegler (1983)]. On the other hand, the thermoplastic part ¥,
takes into account the irreversibility of the thermomechanical process [see e.g. Celentano
(1994)]. Moreover, the phase-change part . includes generalized phase-change effects by
means of the phase-change function /. [see e.g. Celentano (1994)].

This definition of ¥ constitutes a crucial point of the model since it is the basis for
deriving all the constitutive equations presented in Section 2.1 [see e.g. Celentano (1994)].
In particular, the secant and tangent constitutive laws, the specific heat capacity and the
thermoplastic coupling term will be shown below.

(¢) Secant and tangent constitutive laws. The thermoelasto-plastic secant constitutive
law is obtained using eqn (11) as:

c=6(e—e.7T)=0 (g—&")—-p(T—Ty)+a,. (34)

It should be noted that this secant or hyperelastic constitutive law circumvents the
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usual thermodynamic constraints [see e.g. Cassenti and Annigeri (1989); Coleman and
Gurtin (1967)] and it depends exclusively on the thermoelastic part of the free energy
function.

Assuming that T> and g may be temperature-dependent tensors, and using standard
plasticity theory [sec e.g. Lubliner (1990)]. the tangent constitutive law can be written as
[see e.g. Celentano (1994)]

6 =0 g BT (35)
where the elasto-plastic tangent consttutive fourth-rank tensor C*7is:

His
- ”: R&RC. (36)

the thermoelasto-plastic tangent constitutive second-rank tensor 7 is:

H(z) F
B = —(/)(R:[}—— ' _)C:R, (37)

4\ T

the plastic consistency parameter is given by
| : CFYL
= R:T:i—(R:p—__|T|: 38
-t t (o) ] (38)
and the scalar 415 4 = R:C R F ¢¢"H,.. Further. the tangent constitutive tensors are :
=1 (39)
yo=100 oy =00y =0, (40a,b.c)
cC o .

B=F— pie-er L AT—T). (41)

With these last considerations. the plastic evolution equations (25)—(27) are completely
defined [see e.g. Celentano (1994)].

Equivalent forms of the secant and tangent constitutive laws can be obtained if g is
written in terms of o, recovering in this case the usual additive decomposition of strains
[see e.g. Celentano (1994): Celentano ¢7 af. (1991) : Celentano et al. (1992a.b) ; Celentano
et al. (1993)].

(d) Proposed constitutive tensor. During solidification. the material in liquid state
becomes solid. This means that a qualitative change in its thermomechanical properties is
produced. Therefore, this fact should be taken into account in the constitutive tensor
written as [see ¢.g. Celentano (1994) ; Celentano er af. (1993)]:

N ey BT (42)

where C}, and T}, are the volumetric and deviatoric parts of C7, respectively [see e.g.
Malvern (1969): Ziegler (1983)]. Now. /. denotes the phase-change function associated
with a liquid-solid phase-change [see e.g. Celentano (1994)]. In this case, /5. and 1—/7.
represent the liquid and solid volume fractions. respectively. It should be noted that /7. has
to be a smooth function of 7 in cach phase in order 10 be able to evaluate the temperature

derivatives of > needed in the constitutive relations presented in Section 2.1.
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V20, ?

\3c.

Fig. 4. Von Mises temperature-dependent yield function (I is the trace of o).

Note that eqn (42) is an additional constitutive assumption implicitly contained in the
proposed specific free energy given by eqn (30). With this definition of C, both the classic
constitutive law of a liquid in rest (i.e. ¢ is equal to the hydrostatic stress tensor leading to
o’ = 0 where ¢’ is the deviatoric stress tensor) and that corresponding to a solid material
can be represented [see e.g. Celentano (1994) ; Celentano et al. (1993)].

(e) Yield function. A Von Mises temperature-dependent yield function (see Fig. 4) has
been adopted as {see e.g. Armero and Simo (1992a,b) ; Celentano (1994); Wriggers and
Miche (1992) ; Wriggers et al. (1989)]:

F(e.¢".T) = /3J,—%, (43)

where J, = %a’ 16’ 1s the second invariant of the deviatoric stress tensor and € is the total
hardening function defined by :

(6" T) =€"(T)+(1—f5)6", (44)

where ¢"(T) is the thermal hardening function (also assumed to be a positive smooth
function of T') related to the uniaxial cohesion of the material [see e.g. Celentano (1994)].

Moreover, the flow potential is now given by R = (\/3/2\/72)0’, where it should be
noted that R is non-determinate when ¢’ = 0. However, as €™ > 0, it can be observed that
F < 0 for this particular situation. Therefore, a purely elastic material behaviour (1 = 0) is
considered for this case.

With this definition of F, the well-known plastic restriction [see e.g. Lubliner (1972);
Lubliner (1990)] 0F/da,Og, <0 for F=F=0 reads R:C:R+(l —f';c)H@p >0 for
F = F = 0 which is clearly satisfied if the additional constraint H, > —R:%: R is assumed
[see e.g. Lubliner (1972); Lubliner (1990); Celentano (1994)], where the condition
R:C:R > 01s verified taking into account the definitions given above [see e.g. Celentano
(1994)]. In the solid phase (f3. = 0), the particular situation with Hy > 0 is characteristic
of work hardening plastic materials [see e.g. Lubliner (1972) ; Lubliner (1990)].

(f) Specific heat capacity. Taking into account eqn (18) (considering, once more, the
definition of the specific free energy given above), the specific heat capacity is expressed as
[see e.g. Celentano (1994)]:

¢ =de—e, T) T eS8 ey LOF e wyar—1y)
=¢e—e"T)= ——(e—¢"):—~:(e—¢ = ‘(e—¢ —
2pq oT? Po 0T? ¢
27 O o2 T o T
. . — P S — —
+7p(, 6T.(&: )+ —T I:(T T,) Tln—T0:|+2T—-aTln~—To. (45)
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It can be clearly observed that eqn (18) preserves the classical definition of the specific
heat capacity in the whole domain because the phase-change part of y does not play any
role in the expression of ¢. In the particular case of absence of temperature-dependent
properties, ¢ = ¢* is obtained [see e.g. Celentano (1994)].

Further, considering that ¢—&” is the thermoelastic deformation term (in the free
energy definition sense), it should be noted that the specific heat capacity does not depend
directly on plastic variables. This assumption is typical of materials with uncoupled instan-
taneous elasticity and it is also usually accepted for metals [see e.g. Lubliner (1972);
Lubliner (1990)].

(g) Thermoplastic coupling term. The thermoplastic coupling term defined in eqn (21)
is obtained as:

=ity T (46)

where
r? = H(4)[(6+ TB): R+ Hyr] D, (47a)
ry = H(W)(6+ TB): R+ Hyly, (47b)

with® = R:C/4and y = —(R: B—CF/éT)/A.

(h) Constitutive inequalities. Assuming isotropic heat conduction response, the con-
ductivity tensor is written as k = k1, where £: Q x Y — R* is the conductivity coefficient.
Therefore, it should be noted that the thermal dissipation equation (23) is clearly fulfilled
if k > 0. Moreover, the plastic dissipation equation (22) becomes now:

Y oy o OF], /3 aE™ o :
TR+ Hat o fi=| =Y 6.0 —Hp — - R ) A <0
"0[@5;7 Rt e ot oper ) N AR Hotpo\ o — a1 ®

(48)

This condition is automatically satisfied if there is no evolution of the internal variables
(4 = 0). If this is not the case, it is clear that the first term in the left-hand-side of eqn (48)
is less than zero and, in order to guarantee the fulfilment of such equations, the following
three sufficient conditions are assumed: (i) H,» > 0, (il) 0¢™/8T < 0 and (iii) df 5./0T = 0.
The first condition is related to the hardening behaviour of the material and guarantees
that ¥® > 0, while the second one refers to the thermal softening effect [see e€.g. Armero
and Simo (1992a.b)]. Finally, the third condition is satisfied taking into account the
definition of /7. given in Section 2.1.

2.3. Thermal contact mode!

(a) Basic definitions. The following conditions are assumed to hold . T, =T, and
I.nT, =0, where I'. « R~"" and [, =« R"=" ' are parts of I', where the convection—
radiation phenomenon takes place between body # and: (a) the environment around it,
and (b) another body due to the gap existing among them, respectively (see Fig. 2). The
heat fluxes corresponding to these two cases are denoted by ¢, and g,, respectively.
Therefore, the normal heat flux to be considered in the boundary equation (7) is:

qcon\ in r( X Y
q* = (49)

q, inl,xT.

(b) Convection—radiation constitutive laws. The standard Newton’s constitutive law has
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been adopted to evaluate the heat flux due to convection-radiation phenomena between a
body and its surrounding environment. This is written as [see e.g. Malvern (1969) ; Ziegler
(1983)]

ooy = 717( T— Tem)- in rc X Y- (SO)

where /i: T x Y —» R™ is the convection-radiation coefficient (temperature-dependent) and
Tow i Qo x Y > R* is the environmental temperature (defined outside Q).

When a gap appears between bodies (1) and (2). convection-radiation effects are
governed by the following constitutive law of the medium separating both bodies [see e.g.
Malvern (1969) ; Ziegler (1983)]:

4o, = —hAT,—Ty) inly xT, (51a)
g4 = —q, nl, xY, (51b)

where /1, ', x Y - R~ is the gap convection-radiation coefficient that, in generally may
depend on the normal gap, the normal contact pressure (both will be defined in next section)
and the temperatures T, existing at the boundaries between the two bodies [see e.g.
Celentano (1994)]. Thus. the gap convection-radiation coefficient is expressed as
h, = /}g(gjn.p,,_. T..,) [see e.g. Wriggers ¢7 al. (1989) : Wriggers and Miehe (1992)].

24 Mechanical contact model

(a) Basic definitions. In order 10 define the contact domain, the following conditions
are assumed to hold I, uT, =T, and I, T,, = 0, where I, = R"» "' is the part of I,
subject to mechanical contact effects and T, < R~ is the part of I', free of such
phenomena (see Fig. 2). It should be noted that T, coincides with I, [see e.g. Celentano
(1994)].

The contact traction vector t*. which has to be taken into account in the boundary
equation (3). is given by :

(t, inl,xY
R (52)
10 inl,, x1
where t, 1s the contact vector [see e.g. Celentano (1994)].

(b) Contact (adherence) constitutive law. The contact vector t, associated with each
boundary I', can be defined as:

t = -pn., inl, xT, (53a)

t, = -t inl, <Y, (53b)

p, being the normal contact pressure [see e.g. Wriggers and Miehe (1992) ; Wriggers et al.
(1989)].

Denoting as uy, the displacement vector of configuration ¢, at I, , the definition of

the so called gap or penetration g, is [see e.g. Wriggers and Miehe (1992) ; Wriggers et al.
{1989)],

g =00 (U, —u,,) in r/‘,, x Y, (54)

where n,;, is the outward unit normal to body 4,,,. which has been chosen here as the
reference contiguration for the contact problem. This choice is arbitrary, and the reversal
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is also valid but does not give any new insight on the problem [see e.g. Wriggers and Miehe
(1992), Wriggers et al. (1989)].

The following secant contact constitutive law is adopted for p, [see e.g. Celentano
(1994) ;. Wriggers and Miehe (1992): Wriggers ¢t al. (1989)]:

po=Hlg,)Eg, mI, xT. (55)

where E, is the normal elastic constitutive modulus (also called the normal asperity stiffness
[see e.g. Wriggers and Miehe (1992) : Wriggers e a/. (1989)] which is temperature-dependent
in a general case) and, as above. H is the Heaviside function (see Fig. 5). The condition of
perfect impenetrability, characterized of ideally polished surfaces in contact, is asymp-
totically approached as £, tends to infinity [see ¢.g. Wriggers and Miehe (1992) ; Wriggers
et al. (1989)].

3. WEAK FORM AND FINITE ELEMENT FORMULATION

In order to obtain the weak form of the quasi-static coupled thermomechanical initial
boundary value problem described in Section 2. a space of admissible displacement test
functions 7 ,isdefined as 7 °, = |y, € [H'(Q)]"|p, = 0 on I',} and the corresponding space
of admissible temperature test functions ¢ , is ¥ , = {n,e H'(Q)|n, =0 on I';} where
H'(Q) is the standard notation for the Hilbert space [see e.g. Simo (1991)]. Accordingly,
an admissible displacement solution space ¥, (for a fixed time reY) is defined
by 'Y, = la(X.1)e[H'(Q)]"~|u(X.7) = a(X.r)on I',} while the admissible temperature
solution space ‘¥, is ¥, = {T(X.)e H' (Q)|T(X.1) = T(X,1) on I';} [see e.g. Simo
(1991)].

Hence, the integral form of the mentioned problem can be formulated as: find a
displacement field u(X.7) and a temperature field T(X. ) which satisfy the local governing
equations such that:

Veo.na+<{peBrno—<o nn +<{tg ) +{t* o0 =0 Vn,ev, (56a)

- <P()(‘Ta Nava— <P()Lﬁu»~ Noot+t V(K VT n o+ pern,e—< Tﬂ Y Na

+<’.P~’]u;"(27 ‘::/"'k.VT~”u>l'.’+<[7"]u;'[‘ +<(/*‘ r]u>lj = 0 Vnueqt~Tw (56b)

where (., Dq. {...>;_ and ...} denote the standard L.-pairing [see e.g. Simo (1991)] in
Q, T, and I, respectively. It is important to note that the contribution of all bodies involved
in the problem are summed in eqns (56) [see e.g. Celentano (1994)].

The time integration of eqn (56b) is performed via a generalized mid-point rule
algorithm [see e.g. Hughes (1987): Simo (1991): Zienkiewicz and Taylor (1989)]. Let
[1, 1+ A1) < Y(Ar > 0) be a time subinterval. Assuming that algorithmic approximations of
the displacement ‘u(X):Q — R"™» and the temperature 'T(X):Q — R* are known, the
objective is to obtain u(.X). T(.X). a(X) and 7(X) at time ¢+ Ar. To this end, it is necessary
to find "**u(X) and "* ¥ T(X) which verify the local governing equations such that:

Fig. 5. Normal contact pressure.
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IR Y

x o= (Y —="0)AL (57a)

A

Y=o Yy+(—2'y withae[0,1], (57b)

¥ being any variable in eqns (36). The option chosen in this work is « = 1, i.e. backward
Euler scheme [see e.g. Hughes (1987) . Zienkiewicz and Taylor (1989)].

In the context of the finite element technique [see e.g. Hughes (1987) ; Zienkiewicz and
Taylor (1989)]. the discrete problem can be obtained via a spatial Galerkin projection of
the semidiscrete problem into finite dimensional subspaces ,¥", < ¥, and ¥ < ¥ of
admissible C” continuous shape functions N, = % rand N < ¥, respectively [see e.g. Simo
(1991); Hughes (1987); Zienkiewicz and Taylor (1989)]. Consequently, the admissible
“algorithmic™ solution spaces ., < 'Y, and ;, ¢, < "%+ (for fixed time 1€ Y), also con-
sisting of typical C° functions, are defined such that ju(X) < '%, and , T(X) < ' ¥, respec-
tively [see e.g. Hughes (1987) ; Simo (1991) ; Zienkiewicz and Taylor (1989)].

Making use of the standard spatial interpolation for the displacement and temperature
fields [see e.g. Hughes (1987) ; Zienkiewicz and Taylor (1989)], it leads to:

ulY) = N (X)yre (58a)
CTY )y = N T® (58b)

where N, =(N,.....N, ] with N, =Nle,#», and Ny=[N,...,N; ]| with
Np =N, , both for i =1..... Hpoge and € = 1, ..., Bger, [se€ €.g. Hughes (198%; Zien-
kiewicz and Tavlor (1989)].

In above. N, and N are the element shape tunction matrices for the displacement and
temperature interpolation, respectively. Further, ‘U is the nodal displacement vector, "T®
is the nodal temperature vector (the superscript “‘e”’ denotes element values) and I is the
identity matrix. [t should be noted that the same finite element interpolation is used for
each component of u and 7 [see e.g. Celentano (1994)]. For simplicity in the notation, the
subscript /1 will be dropped from here onwards.

Following standard procedures [see e.g. Hughes (1987); Zienkiewicz and Taylor
(1989)], the global discretized thermomechanical equilibrium equations can be written in
matrix form as [see e.g. Celentano (1994)} :

(#A"R( — xyF, 'A”L\IFU‘F"A[F/ =0
<1 T \/RT — /-‘\11:, [!—ArC_l-v- A/CP]/+A/T_1+A1K1+A/T (59)
L . /mf\le o [f» \(’ e \:GP]J‘.M[’/( = (

where R, and R; are the mechanical and thermal residual vectors, respectively. The external
force vector is F,. F, denote the internal force vector and F, is the mechanical contact
vector. Moreover. F is the external heat flux vector, C is the capacity matrix, K is the
conductivity matrix and L. is the “phase-change™ vector rate [see e.g. Celentano et al.
(1991) ; Celentano er af. (1992a.b) . Celentano er al. (1993), Celentano er al. (1994), Celen-
tano (1994)]. Furthermore. G 1s the thermoelastic coupling matrix, while C, and G, are
coupling matrices due to plastic effects. Once more, "**'U, "#4'T and '**'L,. are computed
using eqn (37a).

As usual. all vectors and matrices are assembled from the element contributions in the
standard manner [see e.g. Hughes (1987) ; Zienkiewicz and Taylor (1989)]. The form of the
different elemental expressions appearing in eqns (59) can be seen in Box 1,where the
superscript .7 denotes the transpose symbol and B is the usual strain—displacement matrix
[see e.g. Hughes (1987): Zienkiewicz and Taylor (1989)]. F. and F. represent the point
force vector and the temperature-dependent concentrated heat flux vector respectively,
with n,, and n, being the corresponding number of loaded element nodes.
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Box 1. Element matrices and vectors in the discretized thermomechanical equilibrium equations

r * "
Fi'= | NJBidQ+| NJidE+ ¥ F
[oN

I

Fi'=| B’adQ
i
Fer— | N tedr
Jre
Fio = . N—,”p(,rdQ+' NJGdl,+ | NjiT.. dU + 3 Fe
Jav Ji Jr e
= ‘ N/ poeN, dQ
Q

- ” .
Ko = ' (V\',)’kVN,dQ+J N7AN,AI < | NI, dl,
[eh o :

r ol

Lo = ’ N7 py L, dQ
@€

N7 N, dQ

G = ‘ N/ T BdQ
Q°

Gy = N/ BdQ
JO

with

N, = INL N

Vector L, contains the latent heat effect when '~/ # 0. Considering that f,, may
present a jump discontinuity for the isothermal problem or a very steep gradient [depending
on the size of the phase-change interval (T,— T,)] for the non-isothermal one, a non-
standard spatial integration is required to compute L, accurately. The option chosen
here is the well-known subdomain integration technique [see e.g. Celentano et al. (1994),
Celentano (1994)].

The plastic coupling matrices (C, and G,) are zero if no plastic evolutions take place.
Similarly, F, s null when no mechanical contact effects appear [see e.g. Celentano er al.
(1993) ; Celentano (1994)]. It should be noted that the third integral of K is only evaluated
in I'; due to the consideration of matrix N,_in its expression [see e.g. Celentano (1994)].

Finally, the solution of the non-linear system of eqns (59a) has been attempted by a
staggered scheme [see details in the work of Celentano (1994)].

4. NUMERICAL EXAMPLES

4.1. Quenching of u pressurized cviinder

The quasi-static thermomechanical behaviour ot a thick-walled cylinder, initially pre-
ssurized with p, = 200 N/mm? and subsequently quenched from the initial temperature
T, = 320°C down to the environmental temperature 7, = 20 C, is analysed. This example
has been used by several authors as a test problem to study the performance of different
solution strategies for thermomechanical analyses and to evaluate the influence of coupling
terms [see e.g. Argyris er al. (1981): Armero and Simo (1992a.b)]. Figure 6 describes the
problem layout, the geometry and the simple finite element mesh (composed of 20 four-
noded axisymmetric elements) used in the computations. Plane strain conditions in the
axial direction have been assumed for simplicity (indicated with two continuous lines in
Fig. 6). The temperature-dependent mechanical and thermal properties are shown in Tables
1 and 2, respectively.
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insulated

{
‘ ;\ h=1
| P, =200N/mm?
“20C‘i””””””“””” »=20°C
Y

x Tp=320°C WATER

y—

R,=100 mm

!

' K. =200 mm
|

Fig. 6. Quenching of a pressurized cviinder: geometry and finite element mesh.

Four different numerical analyses (using a time step of 10 s) have been considered for
this problem {see e.g. Celentano (1994)]:

thermally unidirectional coupled and mechanically elastic (TUC-E),
bidirectional coupled and mechanically elastic (BC-E),

thermally unidirectional coupled and mechanically elasto-plastic (TUC-EP),
bidirectional coupled and mechanically elasto-plastic (BC-EP).

Figures 7 and 8 show the temperature and radial displacement evolutions of a point
located at the inside wall. It can be observed that. for the physically realistic material
properties. the thermomechanical coupling terms do not play a significant role in the
solution considered.

Fable 1. Thermal properties

kg

e Density: p, = 1.0 —

mm’
Specitic heat oIy = 1310 =20+ 3.50 N mm
e Specific heat capacity : ¢ = 1.3« =
pecific heat capacity © ¢ +3 ke C

. N
e Conductivity coefficient: A(7) = 1.466 x 10 (T 20) »45,(){7]
s

e Convection radiation coetficient (water sohd): /i, ., = 1.16
mms C

e Convection radiation coefhicient (air solid): h,, = 0. (){ ]
mms C

Tuble 2. Mechanical properties

N
e Young's Modulus: E(T) = ~93.0(7 -20)+22x 1()’[*7*}
mm-
e Poisson’s ratio s v(T) = 1.4 x 10 *(7 201 ~0.28&

e Thermal dilatation coefticient: (71 = 3.0 < 10 "(T=20)+12.0x 10 (|:C]

. . ; . N
o Thermal hardening function: ¢ (1) = — (L134T - 20) ~32().0\:* :|
mm-

o

N
e Plastic hardening coefficient: H. - = “_0[,, - J
mm-
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Fig. 7. Quenching ot a pressurized cylinder : temperature evolution at the inside wall.

The same analysis has been performed using 4 physically unrealistic thermal dilatation
coefficient #;, = 5»;,. The results can be found in Figs 9 and 10. In this situation, the
differences between the unidirectional and bidirectional coupled solutions exhibit clearly
the importance of the thermomechanical coupling terms.

4.2. Solidification test
The cylindrical casting of Nishida er al. (1986) has been analysed. The experiment
consisted of casting commercial purity aluminium into an instrumented steel mould. The

\; n I ¢ d.
« * ¥
- ™ »* -
< s " i
*
-
»
P -
— X *
E |- '
e LI ¥ i
2 ¥ © TUC-E
g |- © BC-E
2] e ~ TUC-EP
< © + BC-EP
A =+ 8 L
- ; ]
< 3 -
i =}
8 <]
g
o a
< o 8 ] B
] B g o J?
0. 100 200. 300, 400. 560. 600.  700.  800.  900.  1000.
TIME [s]

Fig. 8. Quenching ol a pressurized cylinder : radial displacement evolution at the inside wall.
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.
[
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TIME (s]

Fig. 9. Quenching of a pressurized cylinder: temperature evolution at the inside wall for
Fin = 5%

analysis begins when the mould is completely filled with aluminium in the liquid state,
where the initial temperatures are assumed to be 670°C for the casting and 200°C for the
mould. Thermocouples as well as two quartz rods were placed in the mould wall and in the
mould cavity [see Fig. 11(a)] in order to measure temperature and radial displacement

evolutions. respectively. Geometrical data and thermocouple locations are displayed in Fig.
11(b).

x x
x x x x -
[l x + F
x x + + *
x . +
["a) x
,_,——4" x . +
£ x +
E | x + 0
= x +
Z x +
. + o TUC-E
2 < x . +
CHE I ° BC-E
- « TUC-EP
[e]
o o + BC-EP
wy o)
— ] o
a o
| ° o o !
o o
7 © o g g o
o] ° [w] o a
:_‘ o] ° o [n] Q a o
| o ¢
[¢] o °
o o o
0. 100. 200. 300. 400. 500. 600. 700. 800. 900.  1000.
TIME |s]

Fig. 10. Quenching of a pressurized cylinder: radial displacement evolution at the inside wall for
T = 5 %Ly
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Fig. 11 Solidification test. iw) Schematic of the experimental setup of Nishida e ¢l (1986) and (b)
geometry and thermocouples locations in the mould and casting [drawings trom the work of Smelser
and Richmond (19881

The temperature-dependent thermal and mechanical properties of aluminium are
shown in Tables 3 and 4. respectively. [t should be noted that for this class of aluminium,
only an isothermal liquid solid phase-change can occur leading. therefore. to
oo =H(T— 7,.) in this case. The steel is assumed to have constant thermal and mechanical
properties (see Tables 5 and 6). The convection -radiation coethicient of the metal-mould
interface is gap-dependent (see Table 7).while the contact properties between aluminium
and steel can be found in Table &. 1t should be noted that a frictionless condition has been
considered for simplicity. Moreover. the gravity force is the only external force acting on
the casting and mould.

The finite element meshes used in the numerical analysis of this problem can be seen
in Fig. 12. The first of them {Fig. 12(a)] is a 2D mesh composed of 225 linear triangular
axisymmetric elements. Moreover. assuming that all the state variables depend exclusively
on the radial direction and time. it is possible to choose a horizontal slice at the mid-
height of the mould tor numerical analysis [see ¢.g. Celentano (1994); Celentano et ul.
(1994) . Smelser and Richmond (1988)]. This simplificative assumption allows, therefore.
the use of a 2D strip [Fig. 12(b)] containing 42 four-noded bilinear axisymmetric elements
and a quarter of a 3D strip [Fig. 12(c)] discretized with nearty 600 linear tetrahedral
elements.
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Table 3. Thermal properties of aluminium

Ky
e Density: p, = I(wilmli N ‘
m’

e Spectfic heat capacty :

R heal o

‘ kg C
(0.22K3 100.0
(0.2379 200.0
02476 000
0.2576 400.0
02672 S00.0
0.2769 6000

o Conducuvity coetlicient

wo | R ARE

' ms (
0.0360 100.0
0.0340 200.0
0.0320 400.0
0.0520 600.0
0.0300 6399
0.0220 660, |
002230 X000

e Meclung temperature: 7., = 6600 | €]

keal
e Jatent heat /- 94 44

o

The varwuons of o7 and Ac74 have been assumed Lo be piecewise linear within the mentioned
temperatures

+——casting ————-- - ——mould ——
v LTI T L ] L T O T T T
e 0

#castingt mould

47
i

Y
|

V

NV

Wi
7
‘a0

{
|

}

]

\

A\

)
9

NAANANAN
{

Fig. 120 Sohditication test: tinite element meshes.
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Table 4. Mechanical properties of aluminium

e Young's Modulus:

E(T) x 10* [MPa] T[]
6.93 250
3.54 2000

e Poisson’s ratio: v = (.37
e Thermal dilatation coefficient:

I
2, (T) x 10° [E} ')

23,19 250
27.86 300.0
30.23 400.0
30.36 659.9
30.12 6601

e Thermal hardening function::

¢"(T) [MPa] Tl
49.30 250
0.01 660.0

e Plastic hardening coefficient: #,. = 0.0 [MPu]

The variations of E(7). %, (T) and %" (T) have been assumed to be piecewise linear within the mentioned
temperatures.

Table 5. Thermal properties of steel

m’

k
e Density @ p, = 7850.0 |:_§’J
IS fic heat v — 0130 keal
e Specthic heat capacity : ¢ = 0,132
pectfic heat capacity @ ¢ ke C

. . . ; kcal
e Conductivity coefficient: A = 0.0109 | —-—
. ms C

Table 6. Mechanical properties of steel

e Young's Modulus: £ = 19.4 x 10" [MPa]
e Poisson’s ratio: v = 0.30

: ) . o
e Thermal dilatation coeflicient : %, = 12.0 x 10 {Z]

o Thermal hurdening function: 4% = 210.0 [MPa]}
o Plastic hardening coefficient: H,. = 0.0 [MPa]

Table 7. Thermal properties of the casting--
mould interface

o Convection-radiation coefficient

kcal
- gap [mm]
m-s €
0.7 0.0
0.l B

Table 8. Mechanical properties of the casting-mould interface

e Normal asperity stiffness : £, = 10.0"" [MPa/m]
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Figo 13 Salidification test emperature evolution at the center of the casting.

System (39a) has been solved using the BC numerical strategy with a time step of 5s.
In addition to the features already commented. this fact implies that the energy equation
has been solved considering the coupling thermomechanical terms and taking into account
the changes in the thermal boundary conditions due to the radial displacements of the
specimen.

The temperature evolutions at diflerent points of the mesh are plotted in Figs 13-17.
The phase-change effects in the casting can easily be appreciated. Excellent agreement
between the numerical results and the experimental ones is obtained.

Figure 18 shows the evolution of the radial displacement at the cxternal aluminium
surface. Similarly. Fig. 19 plots the same evolution for a point situated at the inner mould
surface. Once more. a good agreement is found between the experimental and numerical
results. Further. the progressive change in contact conditions, causing the convection—
radiation coctlicient to decrease significantly. can clearly be noted in the radial gap evolution
depicted in Fig. 20.

The numerical results shown in Figs 13 20 using the three meshes of Fig. 12 show that
the simplificative assumption mentioned above seems o be relatively good [fact already
noted by Celentano er al. (1994) and Smelser and Richmond (1988)].

Although linear interpolation clements have been used in the analysis [Fig. 12(a) and
12(c)]. the well-known volumetric locking effect on the numerical solution [see e.g. Hughes
(1980)] for the liguid phase does not occur because the material is assumed to be com-
pressible (the bulk modulus has a finite value) during the whole cooling process. Further-
more. knowing that in the present tormulation tr " = 0 (tr is the trace symbol), even with
tre” = 0 (tyvpical locking when considering a infinite bulk modulus [sce e.g. Hughes (1980)],
the constraint tr ;- = 0 1s not satisticd due to the thermal deformations. 1e. tr & = 3 o,
[T" Tu]-

Finally. 1t is important to emphasize that the usual ““numerical trick™ of increasing the
thermal dilatation coefficient in the liquid phase in order to obtain more realistic dis-
placement evolutions [sce ¢.g. Smelser and Richmond (1988)] is not necessary in this model
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Fig. T4 Sohditication test temperature evolution at a pomt sitwated 10 mm from the center of the
casting.
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Fig. 16. Solidification test : temperature evolution at the inner mould surface.
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Fig. 17. Solidification test: temperature evolution at a point situated 8 mm from the inner mould
surface.
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Fig, I¥. Sohditicanon test: radial displacement evolution at the casting surface.
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Fig. 19. Sehditication test : radial displacement evolution at the inner mould surface.

due to the full volumetric behaviour of the material in this phase given the constitutive
equation (42).

3 CONCLUSIONS

A thermomechanical model to simulate the solidification problem of casted metals has
been presented. The model. based on thermodynamic principles. takes into account different
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Frg. 200 Sohdification test: radial gap evolution.

states of the soliditving material by introducing: a new phase-change function into the
definition of the constitutive tensor. some internal plastic vartables and a temperature-
dependent constitutive law. Besides. full thermomechanical coupling terms and variable
mechanical and thermal boundary conditions have been considered.

The model has been implemented in a finite element code. An enhanced staggered
scheme has been used in order to solve the highly non-linear fully coupled finite element
cquations. Finally. the numerical examples analysed show the robustness of the approach.

Further research in this ficld by the authors includes an extension of the model to
account lor micro 1macro evolution laws. the use of mixing theory to model casting of
complex alloys and the implementation of ditferent numerical strategies to enhance even
more the cost-effectiveness of the numerical solution.
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