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Abstract A coupled thermomechanical model to simulate solidification problems in casting is
presented. The model is formulated from a phenomenological point 01'\ iew using a general isotropic
thermoelasto-plasticity theory Generalized phase-change effects accounting for the different
thermomechanical behaviour of the solidifying material during Its evolution from liquid to solid
have been considered. For this purpose, a phase-change function. plastic evolution equations and a
temperature-dependent constitutive law have been defined. Full thermomechanical effects as well
as variable thermal and mechanical boundarv conditions are also taken into accounl.

Particular details concerning the num~ncal unplemell1atlOn of the model are given, where
special emphasis is devoted to the resulting highly non-linear fully coupled finite element equations.

The behaviour of this formulation is studied first in a simple quenching problem. Finally, a
cylindrical casting test problem including phase-change phenomena. temperature-dependent consti­
tutive properties and contact effects is analysed. 1\ umerical results are compared with laboratory
measurements

I I "TROD\t TIt)'.,

The prediction of the full thcrmomechanical behaVIOur of bodies with thermal and mech­
anical temperature-dependent material properties is of great practical importance in many
engineering situations. In particular. a major issue is the formation of cracks due to induced
thermal stress fields in casting processes. Although an analytical investigation into thermal
stress development has been attempted by many researchers [see e.g. Cassenti and Annigeri
(1989); Malvern (1969); Ziegler (1983 )], it has long been recognized that the use of
numerical methods is necessary to analyse complex realistic problems.

For this purpose, different thermomechanical formulations with internal variables
governed by rate equations [see e.g. Coleman and Gurtin (1(7) ; Lubliner (1972) ; Lubliner
(1990)] have been proposed and successfully applied for the analysis of coupled elasto­
plastic problems by many researchers [i.e. see e.g. Argyris £'1 a/. (1981); Armero and Simo
(1992a,b); Bruhns and Sluzalec (1989); Kleiber (1991): Simo (1991); Sluzalec (l988);
Smelser and Richmond (1988) ; Wriggers and Miehe (1992) ; Wriggers ('{ a/. (1989)]. Some
of these models have been used to simulate solidification processes [see e.g. Smelser and
Richmond (1988), Williams ('I a/. (1990) and the references there listed]. Nevertheless, this
problem has many complex aspects that are usually difficult to deal with, such as:

• the equilibrium and energy equations are coupled. Consequently, a robust and efficient
numerical strategy is crucial for solving the highly non-linear finite element equations,

• a constitutive model which can represent the liquid. mushy and solid phases of the casting
is necessary,

• different kinds of materials are usually involved in solidification processes,
• thermal and mechanical changing boundary conditIons must be taken into account. This

requires the consideration of a pressure. gap-dependent convection- radiation model and
a contact-friction formulatIon, respectively.

• latent heat effects introduce oscillations in the algorithms.
• an accurate residual stress evaluation has to be performed,
• microstructural effects may be important.
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In this paper, a general phenomenological thermoelasto-plastic model taking into
account many of previous aspects is presented in Section 2. Furthermore, a thermo­
mechanical contact model, including a gap/pressure-dependent convection~radiationmodel
and a contact formulation, is also presented. As a first approach to the problem, infinitesimal
deformation will be assumed and friction effects will be neglected in this work.

In Section 3, the finite element formulation of the coupled thermomechanical model is
derived. Special attention is devoted to "non-standard" terms accounting for phase-change,
thermomechanical coupling and contact effects.

Two numerical examples are presented in Section 4. A study of the performance of
different solution strategies and the influence of the thermomechanical coupling terms when
solving the energy equation has been performed by means of a simple quenching example.
Finally. the model is validated in the analysis of a cylindrical casting test problem, for
which experimental results are available for comparison.

2. GOVER'JI:\G LOCAL EQUATIONS

2.1. C;cllc/'{/I rhcl'I/lO/}/ec!wllical flit/nillatioll

(a) Basic defillitiolls. Let some open bounded domains QUI C [R"d"n (I ~ Ildlm ~ 3 and
( = I..... lIh"'I\) be the reference (initial) configurations of some Ilhody continuum thermo­
eiasto-plastic bodies .4/111 (that may thermomechanically interact between themselves) with
material coordinates labelled by X E Q ill (all of them measured with respect to the same
reference coordinate system), liil = ('Qiil their smooth boundaries respectively, and Y c [R+

be the time interval of analysis (I EO 1'). Further, CPU) (. , t) : .'!4U) ---> [R"d"n denotes the con­
figurations of such bodies at time t and, as usual, QUI = Q U) U lUI' In the infinitesimal
displacement strain context assumed here, the configurations CPU) at different times coincide,
respectively. with the reference ones. For simplicity in the notation, subscript (i) will be
dropped from here onwards unless its use facilitates the description of the formulation.

In phase-change problems. the domain Q is usually decomposed into Ilph domains
(Q = ,,",0,>11 with ph = I.....11

1
,,,) bounded by flp moving phase-change boundaries l~c

(p = I.. . .fll ,). lip" being the number of phases or portions of macroscopical homogeneous
material [see e.g. Celentano (1994)]. The classical isothermal and non-isothermal phase­
change problems are depicted schematically in Fig. 1, where the subscripts s, m and I denote
solid. mushy and liquid phases. respectively. Once more, with the purpose of simplifying
the notation. indexes ph and p will be suppressed in the equations presented below.

A thermomechanical process involving phase-change phenomena can be described by
the following loca! /iit/n of the/leld cquatiolls:

['
T

0)

8,

b)

Fi~ (icollldnc dcscriptiun of a non-linear heat conductor .}6,I, for phase-change problems. (a)
Isothermal case; (b) non-isothermal case.
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• equilibrium condition

V' (J + POBF = 0 in n x r.

• First Law of Thermodynamics or balance ofenergr

• Second Law of Thermodvnamics, expressed bl' the Clausius-Duhem inequality

. r [ql . ,Po~' = Pol] - Po T +V' f ~ 0 In n x )' ,

together with adequate boundary conditions

u = ii in rl/ x 1',

(J'n=i+t* inr"xL

T = f in r 7 x Y,

q'n= -q-q* inC/xI',

initial conditions

u(X.OII~o = uniX) = 0 inn,

T(X, 011 = 0 = To(X) in n,

649

(I)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

and appropriate constitutive equations for w, (J, IJ and q all defined in Q x Y.
These equations describe a quasi-static coupled thermomechanical initial boundary

value problem. Here, V = a/ax is the gradient operator, rr: nx Y ~ IRnd'm x lR"dim is the
Cauchy stress second-rank tensor, Po: n ~ IR+ is the density at the reference configuration
and BF : n x Y ~ IRnd,m is the specific body force. Further, w: n x Y ~ IR is the specific
internal energy, q: nx Y ~ lR"d,m is the heat flux vector, r: 0 x Y ~ IR is the specific heat
source, 8: nx Y ~ IRnd'm x lR"d,m is the infinitesimal strain second-rank tensor defined by the
usual kinematics relation [see e.g. Malvern (1969)] and u: n x Y ~ IRnd,m is the displacement
field. The superposed dot implies time derivative while the standard notation for the
multiplication of tensors is used [see e.g. Malvern (1969)]. Moreover, in eqn (3)}': n x Y->
IR is the specific internal entropy production rate and Yf: n x Y -> IR is the specific entropy.

In eqns (4) and (5) it is assumed that the displacement field nIX, t) and the stress tensor
rr(X, t) are prescribed on parts of the boundary rl/ c IRnd'm - I and r" c IRndim - I respectively,
where n: 00 ~ IRnd,m- 1 is the unit outward normal to the boundary, ii: rl/ x Y ~ IRnd'm is the
prescribed displacement field, i: r" x Y ~ lR"d,m is the prescribed traction vector and
t* : r,r x Y -> lR"d,m is the contact traction vector due to the fact that the !J8(i) bodies may
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Fig. 2. Geumetn~ descriptIon uf t\ll) non-lmear thernwdastic-plastic bodies .11", and .!4",that may
thermomechanically interact hct\\Ccn themselves. la) Mechanical boundary conditions; (b) thermal

!wundary conditions.

come into contact between themselves (see Section 2.4). As usuaL the conditions
f" u f e = (Y:l and r" n r" = 0 are assumed to hold (see Fig. 2).

Similarly with eqns (6) and (7). the absolute temperature field T: Q x T -> [Ir and the
heat flux vector q(X. I) are also prescribed on parts of the boundary r T C lR"d,m- I and
r'l c IR:"""" I respectively, where t: r I Y -> R is the prescribed temperature field,
q: r'i x r -> IR is the prescribed normal heat flux and q*: r" x T -> R is the normal heat
flux due to convection-radiation phenomena (see Section 2.3). Once more, the following
conditions are considered (see Fig. 2): f'j) f

l
= (cQ and r/n r'i = O.

(b) Basic coflstilUlil'(, I'('/alioll\. With the help of the C1ausius-Duhem inequality (3)
and the definition of the spaifIc HC/lI1ho!F~fi'('c (,flagy tf; [see e.g. Coleman and Gurtin
(1967) : Malvern ( 1969) : Ziegler ( 19X3 I].

tf; = 1/~1f,. Y/. T) = ('j-/1T in Ox r. (10)

the constitutive relations for ('!. (J and II can be established. where the superposed caret
serves to distinguish a state function from its repective value. In eqn (10),
'Yo, : 0 x r -> IR""" is the /l",,-dimensional (/.; = I .... ,11",,; 11

"
H ? I) vector field of phenom­

enological in lerna/ stale l'al'iah/cs governed by rate equations with zero initial values [see
e.g. Lubliner (1972): Lubliner (l9l}Ol). Such variables can be scalars or tensors. Moreover,
it is important to note that E( X.I). x;,( X. I) and T(X. F) are assumed to be the independent
thermodynamic state variables which determine tf;.

The use of the Coleman method [see e.g. Coleman and Gurtin (1967) ; Lubliner (1972)],
taking into account that I; and t can be specified arbitrarily in a given thermodynamic
state. i.e. if there are no internal constraints. leads to the following relations:

(II)
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(12)

Equation (II) is usually known as the isothermal stress strain relation [see e.g. Malvern
(1969)]. Lubliner (1972) has shown that, in order to establish unique constitutive equations,
Coleman's relations (11) and (12) follow even for the definition of iik given by the plasticity
theory (see Section 2.2).

From eqns (10) and (12), the specific internal energy can be expressed in terms of l/J
as:

Finally, the well-known Fourier law is adopted for q:

q=-k·VT.

(13)

(14)

where k is the conductivity second-rank tensor. This path independent way of defining q is
equivalent to that used by Simo (1991) in terms of a smooth convex heat flux potential
function.

(c) Derh'ed cOf/stitutire refatiolls. Other important thermodynamic expressions related
to the behaviour of body .;8 are:

(15)

(16)

p=
(-(1

?T

(':Ij;

~flli(-[;(T' (17)

where C is the elastic tangent constitutive fourth-rank tensor (isothermal) [see e.g.
Malvern (1969)], 'h are the plastic tangent constitutive variables (once more, they can be
scalars or tensors) [see Celentano (1994): Lubliner (1972)] and P is the tangent conju­
gate of the thermal dilatation second-rank tensor [see e.g. Lubliner (1990)]. The symbol
o indicates the appropriate multiplication according with the nature of each internal
variable a.k.

In phase-change problems. the following general definition is adopted [see e.g. Celen­
tano (1994) : Celentano et af. (1993)] :

(18)

where c: n x Y --> IR + is the specific heat capacity. L is the specific latent heat (released in a
freezing problem or absorbed in a melting one) and fpc is the "phase-change" function [see
e.g. Celentano (1994): Celentano et af. (1993)]. 1n an isothermal phase-change problem
j~c = H(T - ~n), with H being the Heaviside function and t mthe melting temperature (see
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Fig. 3). On the other hand, when the phase-change occurs in the range of temperatures
(f1 - fJ,.f~ = fwith:

f(7) ~H<g(T) " 1

;VT~ f s

;f,<VT~fl

;VT> fl'

(19)

where f 1 and f s are the liquidus and solidus temperatures, respectively [see e.g. Celentano
et al. (1994)]. Function g(T) may be obtained using a microstructure model [see e.g. Thevoz
et al. (1989) and references therein]. However, from a macroscopical point of view assumed
in this paper, the simplest choice for g(T) is the linear one (see Fig. 3): g(T) = (T - TJ/
(fl- fJ V f s < T ~ fl' It should be noted that the temperature derivative of the phase­
change function does not exist for certain temperatures. Nevertheless, as it will be shown
later, there is no need to evaluate such derivatives in the energy equation (20) [see e.g.
Celentano (1994); Celentano et al. (1994)].

A further generalization of eqn (18) takes place when two or more phase-changes
occur, i.e. npc ~ 2 [see e.g. Celentano (1994) ; Celentano et al. (1994)]. In this case, the term
L a{pc/aT must be replaced by l:7~ 1 L; a{pc,/aT, where Lj and .f~, are the latent heat and
phase-change function associated with thejth phase-change. To facilitate the notation, the
simpler form of eqn (18) (i.e. npc = I) is retained [see e.g. Celentano (1994); Celentano et
al. (1994)].

(d) Energy equation and coupling terms. Under these considerations, the energy equa­
tion can be rewritten as:

-Poct-poLi,,,,-V'q+Por-T/J:{;+PorP = 0, (20)

where the last two terms in the left-hand-side of eqn (20) denote the thermomechanical
coupling terms [see e.g. Celentano (1994); Celentano et al. (1991); Celentano et al.
(1992a,b); Celentano et al. (1993)]: the first one is normally called the thermoelastic
coupling term [see e.g. Ziegler (1983)] while the second accounts for the thermoplastic
coupling term [see e.g. Celentano (1994)] and it is given by:

(21)

(e) Dissipative inequalities. Ifit is assumed that t/J and (J,k are independent ofVT, and q
independent of (J,b the following inequalities, both derived from equation (3), have to be
fulfilled [see e.g. Lubliner (1972); Malvern (1969); Ziegler (1983)]:

fpc

---'--r-:--­

,
,
,

,

a)

T

b)

T

Fig. 3. Phase-change function for (a) isothermal case; (b) non-isothermal case.
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olj;
DP = Po -ri- 0 IX, ,;:; 0,

ca.,

I
DIll = -q'VT< °T -...:,
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(22)

(23)

where DP and Dill are defined as the plastic and thermal dissipations, respectively. Lubliner
(1972) has also shown that eqns (22) and (23) become the necessary and sufficient conditions
for the fulfilment of the Clausius-Duhem inequality (3). From eqn (22), it is clear that
qk = - olj; ja.k are the conjugate plastic variables of a.,.

2.2. Thermoelasto-plastic model

(a) Basic definitions. In the context of rate-independent plasticity theory, the thermo­
plastic behaviour of the continuum is governed by a state yield function F(qd: 1R";m -> IR
(assumed strictly convex and, for simplicity, defined in terms of a unique smooth function),
such that no plastic evolutions occur when F < 0. In accordance with the work of Celentano
(L994), a particular model takes place when the yield function is assumed to be of the form
F = F((1, 'CP, T), where 'CP : n x Y -> IR is the plastic hardening function [see e.g. Lubliner
(1972)]. Now, the thermoelastic admissible domain (also assumed convex) Ipe is defined as
[see e,g. Simo (1991»):

and the thermoplastic domain is:

IElp = {(O', C6 P , T) E ([Rndnn x IRfld"") x [R x [R+ IF((1, ~P, T) = O} = olEt<. (24b)

Further, the principle of maximum plastic dissipation leads to an associate constitutive
model characterized by the plastic variables (Ot l = sP, a.2 = 'CP, Ot3 = '1P) with the following
evolution equations [see e.g. Armero and Simo (1992a,b)] :

of.
t P = -;;-' i.,

O(J

I E'F.
IjP =- --i

Po aT"

(25)

(26)

(27)

together with the load-unload Kuhn-Tucker conditions [see e.g. Armero and Simo
(1992a,b) ; Simo (1991)] P. ~ 0, F,;:; 0, AF = °and the consistency condition [see e.g. Armero
and Simo (1992a,b); Simo (1991)] ),f' = 0, where sP: n x Y -> [R"dim X lR"dim is the plastic
strain second-rank tensor, '1 P : n x Y -> IR is the plastic entropy and Hep(T): n x Y -> IR is
the plastic hardening modulus given by:

(28)

where h'f,p( T) :n x Y -> [R is the plastic hardening coefficient and R = oFjo(1 is the flow
potential. It can be seen from eqns (26) and (28) that ,€P is defined in terms of eP [see e.g.
Celentano et al. (1991); Celentano et al. (1992a,b); Celentano et al. (1993); Celentano
(1994)].

(b) Proposed specific free energyfunction. Restricting the analysis to the thermoelasto­
plastic isotropic response, the free energy lj; is formulated as [see e.g. Armero and Simo
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(I 992a,b) : Celentano (1994) : Celentano el al. (1991) : Celentano et al. (1992a,b) ; Celentano
elal. (1993)]:

(29)

where t/J,c' t/J,p and t/Jrc are the thermoelastic. thermoplastic and phase-change parts of t/J,
respectively. It should be noted that eqn (29) is a partially decoupled form of the specific
free energy t/J. Choosing the initial temperature as the reference one [see e.g. Celentano
(1994)]. the thermoelastic part t/Jlc is written as:

the thermoplastic part is:

and the phase-change part is:

t/Jpe = I/I pe (T) = - fl Apcun de.
• I"

(31 )

(32)

In above. subscript "0" denotes the initial state of the different variables and superscript
"s" indicates secant thermomechanical properties [see e.g. Celentano (1994)]. The secant
constitutive tensor fJ' can be defined in terms of the more usual secant thermal dilatation
second-rank tensorX;h as fJ' = C : X:h with X;h = lX;h 1. where lX;h is the secant thermal
dilatation coefficient [see e.g. Malvern (1969): Ziegler (1983)]. A proposed constitutive
tensor C will be given in Section 2(d) obtaining in this form a complete definition of t/J.
Furthermore. A pc is defined as [see e.g. Celentano (1994)]:

(33)

where /} is a dummy variable. The thermoelastic part t/Jte expressed by eqn (30) is a
generalization of the usual specific free energy definition given in the thermoelastic context
[see e.g. Malvern (1969); Ziegler (1983)]. On the other hand, the thermoplastic part l/JtP
takes into account the irreversibility of the thermomechanical process [see e.g. Celentano
(1994)]. Moreover, the phase-change part t/Jrc includes generalized phase-change effects by
means of the phase-change function/pc [see e.g. Celentano (1994)].

This definition of l/J constitutes a crucial point of the model since it is the basis for
deriving all the constitutive equations presented in Section 2.1 [see e.g. Celentano (1994)].
In particular, the secant and tangent constitutive laws, the specific heat capacity and the
thermoplastic coupling term will be shown below.

(c) Secant and langent constitullU' /ilI\S. The thermoelasto-plastic secant constitutive
law is obtained using eqn (11) as:

(34)

It should be noted that this secant or hyperelastic constitutive law circumvents the
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usual thermodynamic constraints Isee e.g:. Cassenti and Annigeri (1989); Coleman and
Gurtin (1967)] and it depends exclusively on the thermoelastic part of the free energy
function.

Assuming that and If may be temperature-dependent tensors, and using standard
plasticity theory [see e.g, Lubliner (I L)90)]. the tangent constitutive law can be written as
[see e.g. Celentano (1994)1

(J = .". f; /3'" /.

where the elasto-plastic tangent constitutive fourth-rank tensor IS:

(35)

R R (36)

the thermoelasto-plastic tangent COl1stituti\C second-rank tensor pep is:

the plastic consistency parameter IS glVCI1 b~

I l -F' j'
I = R r :;' - (', R : fJ - (_ .,') t. \

-I (T, •

(37)

(38)

and the scalar A is A = R' : R -- ('F (-'(PH". Furthcr. the tangent constitutive tensors are:

(39)

"I }': = o. ;'; = O. (40a,b,c)

(41 )

With these last considerations. the plastic evolution equations (25)-(27) are completely
defined [see e.g. Celentano (1994)].

Equivalent forms of the secant and tangent constitutive laws can be obtained if ps is
written in terms of ~;h recovering in this case the usual additive decomposition of strains
[see e.g. Celentano (1994) ; Celentano Cl al. (1991) ; Celentano et a/. (l992a,b) ; Celentano
et a/. (1993)].

(d) Proposed ('onstitlltil'c tellsor. During solidification. the material in liquid state
becomes solid. This means that a qualitative change in its thermomechanical properties is
produced. Therefore. this fact should be taken into account in the constitutive tensor
written as [see e.g. Celentano (1994): Celentano et (//. (I L)9:1)] :

(42)

where and arc the volumetric and deviatonc parts of C\ respectively [see e.g.
Malvern (I %9) : Ziegler ( 1983)]. 1\1 ow. r~c denotes the phase-change function associated
with a liquid-solid phase-change [sec e.g. Celentano (1994)]. In this case,f~c and l-f~c

represent the liquid and solid volume fractions. respectively. It should be noted thatf~~ has
to be a smooth function of T in each phase in order to be able to evaluate the temperature
derivatives of C needed in the consti tutive rela tions presented in Section 2.1.
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11

Fig. 4. Von Mises temperature-dependent yield function (I, is the trace of 11).

Note that eqn (42) is an additional constitutive assumption implicitly contained in the
proposed specific free energy given by eqn (30). With this definition of C, both the classic
constitutive law of a liquid in rest (i.e. a is equal to the hydrostatic stress tensor leading to
a' = 0 where a' is the deviatoric stress tensor) and that corresponding to a solid material
can be represented [see e.g. Celentano (1994); Celentano et al. (1993)].

(e) Yield/unction. A Von Mises temperature-dependent yield function (see Fig. 4) has
been adopted as [see e.g. Armero and Simo (1992a,b); Celentano (1994); Wriggers and
Miehe (1992); Wriggers et al. (1989)]:

(43)

where Jc = ~a' : a' is the second invariant of the deviatoric stress tensor and 71 is the total
hardening function defined by :

(44)

where !6 1h
( T) is the thermal hardening function (also assumed to be a positive smooth

function of T) related to the uniaxial cohesion of the material [see e.g. Celentano (1994)].
Moreover, the flow potential is now given by R = (./3/2';:;;')a', where it should be

noted that R is non-determinate when a' = O. However, as 71th > 0, it can be observed that
F < 0 for this particular situation. Therefore, a purely elastic material behaviour (A = 0) is
considered for this case.

With this definition of F, the well-known plastic restriction [see e.g. Lubliner (1972);
Lubliner (1990)] oFloa.kOgk < 0 for F = F = 0 reads R: C: R + (1-f~)H'6P > 0 for
F = F = 0 which is clearly satisfied if the additional constraint H'(jp > - R: 71: R is assumed
[see e.g. Lubliner (1972); Lubliner (1990); Celentano (1994)], where the condition
R: C : R > 0 is verified taking into account the definitions given above [see e.g. Celentano
(1994)]. In the solid phase (f~ = 0), the particular situation with H,.p > 0 is characteristic
of work hardening plastic materials [see e.g. Lubliner (1972); Lubliner (1990)].

(f) Specific heat capacity. Taking into account eqn (18) (considering, once more, the
definition of the specific free energy given above), the specific heat capacity is expressed as
[see e.g. Celentano (1994)]:

2T ops cCc' [ TJ ocS T+- -~-: (e-eP)+c'- T~.~ (T - To)- Tln- +2T-ln-.
Po oT eTC To iJT To

(45)
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It can be clearly observed that eqn (18) preserves the classical definition of the specific
heat capacity in the whole domain because the phase-change part of ljJ does not play any
role in the expression of c. In the particular case of absence of temperature-dependent
properties, c = c' is obtained [see e.g. Celentano (1994)].

Further, considering that £-£P is the thermoelastic deformation term (in the free
energy definition sense), it should be noted that the specific heat capacity does not depend
directly on plastic variables. This assumption is typical of materials with uncoupled instan­
taneous elasticity and it is also usually accepted for metals [see e.g. Lubliner (1972);
Lubliner (1990)].

(g) Thermoplastic coupling term. The thermoplastic coupling term defined in eqn (21)
is obtained as:

(46)

where

(47a)

(47b)

with <I> = R: C!A and X= - (R :P- cFjaT)! A.

(h) Constitutive inequalities. Assuming isotropic heat conduction response, the con­
ductivity tensor is written as k = kl, where k: n x Y ~ IR+ is the conductivity coefficient.
Therefore, it should be noted that the thermal dissipation equation (23) is clearly fulfilled
if k ~ O. Moreover, the plastic dissipation equation (22) becomes now:

(48)

This condition is automatically satisfied if there is no evolution of the internal variables
(), = 0). If this is not the case, it is clear that the first term in the left-hand-side of eqn (48)
is less than zero and, in order to guarantee the fulfilment of such equations, the following
three sufficient conditions are assumed: (i) H'6 P ~ 0, (ii) oCfjth/oT:( 0 and (iii) ~l~e/oT ~ O.
The first condition is related to the hardening behaviour of the material and guarantees
that CfjP ~ 0, while the second one refers to the thermal softening effect [see e.g. Armero
and Simo (1992a,b)]. Finally, the third condition is satisfied taking into account the
definition off~ given in Section 2.1.

2.3. Thermal contact model

(a) Basic definitions. The following conditions are assumed to hold f e U f g = f 4 and
f e n f g = 0, where C C lR"dim- 1 and f g c lR"d"'" 1 are parts of f q where the convection­
radiation phenomenon takes place between body .'!4 and: (a) the environment around it,
and (b) another body due to the gap existing among them, respectively (see Fig. 2). The
heat fluxes corresponding to these two cases are denoted by qeonv and qp respectively.
Therefore, the normal heat flux to be considered in the boundary equation (7) is:

in f, x Y

infgxY.
(49)

(b) Convection-radiation constitutive laws. The standard Newton's constitutive law has
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been adopted to evaluate the heat flux due to convection-radiation phenomena between a
body and its surrounding environment. This is written as [see e.g. Malvern (1969); Ziegler
(1983)] :

(50)

where h: C x r ---> !R ~ is the convection-radiation coefficient (temperature-dependent) and
Tem : nOU ! x r ---> !R + is the environmental temperature (defined outside Q).

When a gap appears between bodies (I) and (2), convection-radiation effects are
governed by the following constitutive law of the medium separating both bodies [see e.g.
Malvern (1969); Ziegler (1983)]:

(51a)

(51 b)

v,here h~: f" x r ---> L-{' is the gap convection-radiation coefficient that, in generally may
depend on the normal gap, the normal contact pressure (both will be defined in next section)
and the temperatures Tid existing at the boundaries between the two bodies [see e.g.
Celentano (1994)J. Thus. the gap convection-radiation coefficient is expressed as
h~ = h~(gn- 17". T",) [see e.g. Wriggers er al. (1989); Wriggers and Miehe (1992)J.

2.4. 'vIee/wl/ieo! co/1locl }}lode!

(a) Bosie definilions. In order to define the contact domain. the following conditions
are assumed to hold f l U f n , = f" and f l n f "I = 0, where f l c !R"d",,-I is the part of ro­
subject to mechanical contact effects and fill c !R"J ",,- I is the part of C, free of such
phenomena (see Fig. 2). It should be noted that f l coincides with r g [see e.g. Celentano
(1994)J.

The contact traction vector t*. which has to be taken into account in the boundary
equation (5), is given by:

It l in f, x r
t* = ~O

l in rill x r

where t, is the contact vector [see e.g. Celentano (l994)J.

(52)

(b) Conlact (adherence) COl/stitutil'e !ml'. The contact vector tl associated with each
boundary r, can be defined as:

t

in fl.. x Y, (53a)

(53b)

Pn being the normal contact pressure [see e.g. Wriggers and Miehe (1992) ; Wriggers et al.
( 1989)J.

Denoting as "UI the displacement vector of configuration <{JUl at fl"" the definition of
the so called gap or penetration lin is [see e.g. Wriggers and Miehe (1992); Wriggers et al.
( 1989)].

(54)

where nil. is the outward unit normal to body /-8'1). which has been chosen here as the
reference configuration for the contact problem. This choice is arbitrary, and the reversal
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is also valid but does not give any new insight on the problem [see e.g. Wriggers and Miehe
(1992), Wriggers et al. (1989)].

The following secant contact constitutive law is adopted for Pll [see e.g. Celentano
(1994); Wriggers and Miehe (1992): Wriggers eI ill. (1989)] :

(55)

where En is the normal elastic constitutive modulus (also called the normal asperity stiffness
[see e.g. Wriggers and Miehe (1992): Wriggers et al. (1989)] which is temperature-dependent
in a general case) and, as above. H is the Heaviside function (see Fig. 5). The condition of
perfect impenetrability. characterized of ideally polished surfaces in contact, is asymp­
totically approached as Ell tends to infinity [see e.g. Wriggers and Miehe (1992); Wriggers
et al. (1989)].

3. WEAK FOR\1 AND FINITE ELEMENT FORMULATIO]\;

In order to obtain the weak form of the quasi-static coupled thermomechanical initial
boundary value problem described in Section 2. a space of admissible displacement test
functionsf ;, is defined as t" = : '1" E [H I (Dj]"""" 1'1" = 0 on r,,} and the corresponding space
of admissible temperature test functions t I is t / = {'L E HI (Q) IlJa = 0 on r T} where
HI(Q) is the standard notation for the Hilbert space [see e.g. Simo (1991)]. Accordingly,
an admissible displacement solution space r ':1'" (for a fixed time t E Y) is defined
by I if" = :u(x. t) E [H I (Q)]"""'lu(X. t) = ii(X. t) on r.,: while the admissible temperature
solution space 1:.£7 is '(,1'/ = : Tp,'.I)EH1(DjIT(X.t) = f(X,t) on rr} [see e.g. Simo
(199 I)].

Hence, the integral form of the mentioned problem can be formulated as: find a
displacement field u(X, t) and a temperature field nx, t) which satisfy the local governing
equations such that:

where (.,.)Q. <"')1. and <''', denote the standard L-pairing [see e.g. Simo (1991)] in
Q, r ~ and r q respectively. It is important to note that the contribution of all bodies involved
in the problem are summed in eqns (56) [see e.g. Celentano (1994)].

The time integration of eqn (56b) is performed via a generalized mid-point rule
algorithm [see e.g. Hughes (1987): Simo (1991); Zlenkiewicz and Taylor (1989)]. Let
[t, 1+ M] c Y(L11 > 0) be a time subinterval. Assuming that algorithmic approximations of
the displacement IU(X): Q --+ [Pi"""" and the temperature IT(X): Q --+ [Pi+ are known, the
objective is to obtain u(X). n~:n. li(X) and t(X) at time 1-rL1I. To this end, it is necessary
to find 1+L'1IU(X) and I t.'H T( X) which verify the local governing equations such that:

p

Fig '. Nllrmal conta.:t pressure.
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I' Y'I X = x" 'X + (l-xYx withcxE [0, I],

(57a)

(57b)

X being any variable in eqns (56). The option chosen in this work is cx = I, i.e. backward
Euler scheme [see e.g. Hughes (1987): Zienkiewicz and Taylor (1989)].

In the context of the finite element technique [see e.g. Hughes (1987); Zienkiewicz and
Taylor (1989)]. the discrete problem can be obtained via a spatial Galerkin projection of
the semidiscrete problem into finite dimensional subspaces I1r" c 'P~, and I1rT c r Tof
admissible CO continuous shape functions N" c If, Tand NT c 'P'T' respectively [see e.g. Simo
(1991): Hughes (1987): Zienkiewicz and Taylor (1989)]. Consequently, the admissible
"algorithmic" solution spaces ;,!f)" c {!f'" and !/:fJ

r c '!£T (for fixed time fEY), also con­
sisting of typical CO functions, are defined such that ;,u(X) c '!£" and ;, r(X) c t!£T, respec­
tively [see e.g. Hughes (1987); Sima (1991); Zienkiewicz and Taylor (1989)].

Making use of the standard spatial interpolation for the displacement and temperature
fields [see e.g. Hughes (1987) ; Zienkiewicz and Taylor (1989)], it leads to:

u(.n == :'\l,,(X)'U lcl (58a)

(58b)

where "'/,=[~", ..... l\",,] with N",=NJE"f" and NT=[NT, ... ,NT ] with
N r = .\ E 1,1 r both for i == 1. ... ,nn"ac and e = I, ... ,nelem [see e.g. HU~hes (1987); Zien­
kiewicz and Taylor (1989)].

In above. N" and N 1 are the element shape function matrices for the displacement and
temperature interpolation. respectively. Further. 'Ue

) is the nodal displacement vector, 'T(e)
is the nodal temperature vector (the superscript "e" denotes element values) and I is the
identity matrix. It should be noted that the same finite element interpolation is used for
each component of u and T [see e.g. Celentano (1994)]. For simplicity in the notation, the
subscript II will be dropped from here onwards.

Following standard procedures [see e.g. Hughes (1987); Zienkiewicz and Taylor
(1989)], the global discretized thermomechanical equilibrium equations can be written in
matrix form as [see e.g. Celentano (1994)] :

<t~IR[ = "\11", ~1~~IFrr+!'~IFI= 0

/"\IR
1

= "'\'1"1 [""\IC-h'\!CI']I+~!t-'+~tK'+~/T

- 1"\ILpL - [i '1(; _,_ "Gp]" .\1(: = 0

(59)

where R( and R r are the mechanical and thermal residual vectors, respectively. The external
force vector is F(. F rr denote the internal force vector and Fr is the mechanical contact
vector. Moreover. F is the external heat flux vector, C is the capacity matrix, K is the
conductivity matrix and Lpc is the "phase-change" vector rate [see e.g. Celentano ef al.
(1991) ; Celentano e! al. (1992a.b) : Celentano e! al. (1993), Celentano e! al. (1994), Celen­
tano (1994)]. Furthermore. G is the thermoelastic coupling matrix, while Cp and Gp are
coupling matrices due to plastic etlects. Once more, 'diU, IHlt and 1+~I:Lpc are computed
using eqn (57a).

As usual. all vectors and matrices are assembled from the element contributions in the
standard manner [see e.g. Hughes (1987) ; Zienkiewicz and Taylor (1989)]. The form of the
different elemental expressions appearing in eqns (59) can be seen in Box I,where the
superscript .-:T denotes the transpose symbol and B is the usual strain-displacement matrix
[see e.g. Hughes (1987): Zienkiewicz and Taylor (1989)]. Fcc and Fer represent the point
force vector and the temperature-dependent concentrated heat flux vector respectively,
with fl" and fl'l being the corresponding number of loaded element nodes.
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Box I. Element matrices and vectors in the dlscrelIzed thermomechanical equilIbrium equations

'I' ~,:B,dQ+ i 'i:tdI+ 2: F
.... n ..,1

F~' = J,

1:" ~ I 1'\,; t* dr
..' r"

Fit' = I' ~;pordQ~ I N;qdf,+ I' "';ill"n df + 2: F',
.... ~r' "' ric 0.1 [- , - I

C''' I' Y 1\1 dQ= .n . I poe. r

K'Ci = I' (V''ill 'kV''i 1 dQ+J'r N;iI"'r df I "",h,""" dr .
.. 0' .,.1

{:~' = I 'i: p" LIp, dQ
.n

C~'i = I "'; 1"; ~ r dQ
L'!!

C '" = I 'i; TpfBdQ
",.n

G~' = IN; r:" B dn
"n'

with
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Vector (pc contains the latent heat effect when r-
t1 'ir c # O. Considering thatjpc may

present ajump discontinuity for the isothermal problem or a very steep gradient [depending
on the size of the phase-change interval (fj - fJ] for the non-isothermal one, a non-
standard spatial integration is required to compute Lpc accurately. The option chosen
here is the well-known subdomain integration technique [see e.g. Celentano et al. (1994),
Celentano (1994)].

The plastic coupling matrices (Cp and Gp) are zero if no plastic evolutions take place.
Similarly, F( is null when no mechanical contact effects appear [see e.g. Celentano et al.
(1993) ; Celentano (1994 )]. It should be noted that the third integral of K is only evaluated
in rill, due to the consideration of matrix N4T in its expression [see e.g. Celentano (1994)].

Finally, the solution of the non-linear system of eqns (59a) has been attempted by a
staggered scheme [see details in the work of Celentano (1994)].

4. !'oUMERICAL EXAMPLES

4.1. Quenching of a pressuri::ed crlinder
The quasi-static thermomechanical behaviour of a thick-wal1ed cylinder, initially pre­

ssurized with Po = 200 N/mm 2 and subsequently quenched from the initial temperature
To = 320CC down to the environmental temperature T I = 20 C. is analysed. This example
has been used by several authors as a test problem to study the performance of different
solution strategies for thermomechanical analyses and to evaluate the influence of coupling
terms [see e.g. Argyris et al. (1981): Armero and Simo (1992a.b)]. Figure 6 describes the
problem layout, the geometry and the simple finite element mesh (composed of 20 four­
noded axisymmetric elements) used in the computations. Plane strain conditions in the
axial direction have been assumed for simplicity (indicated with two continuous lines in
Fig. 6). The temperature-dependent mechanical and thermal properties are shown in Tables
1 and 2, respectively.
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insulated

h=l

T",=20° C

WATER

Fig 6. QuenchIng of a pre""urved c\linder . geometry and finite element mesh.

Four different numerical analyses (using a time step of 10 s) have been considered for
this problem [see e.g. Celentano (1994)]:

• thermally unidirectional coupled and mechanically elastic (TUC-E),
• bidirectional coupled and mechanically elastic (BC-E),
• thermally unidirectional coupled and mechanically elasto-plastic (TUC-EP),
• bidirectional coupled and mechanically e1asto-plastic (BC-EP).

Figures 7 and 8 show the temperat me and radial displacement evolutions of a point
located at the inside wall. It can be observed that, for the physically realistic material
properties, the thermomechanical coupling terms do not play a significant role in the
solution considered.

I dhie I Thermal properties

l kg ]
• Densit) {'" = 10 ~'m'

• (on\ectlon radiatIon coe!liclenl (water solid)

• Specilic heal capacity' c'( /) I.,. 10 (1

• C'onducti\lt) coe!licrent /-;( T) 1..+6(, x 10

[
!'imm]"01 + '''0 .--­- ." kg C

IT 201~450[sNcJ

II"."" = 1.16[ ~C]mms

• Con\ectlon radlallon coefficient (air solid)' h"" = lUll [ --~--:;J
mms(

Idhlc 2. 'vlechamcal properties

• Young's Modulus E( T) = lJ5.0( J - 20) + 22 x ](J'l ~--:;-J
mm-

• POIsson's ratio: r( T) = 1.4 x 10 'I T 20j ~O.2~

• Thermal dilatatIon coeffiCIent ,,;,,( r I ~ S.O 10" t T- 20) + 12.0 x 10 (, [.~]

• Ihermal hardenIng function (" (Ii o.l.nt T 20) ~ 320.0[ !'----;-J
mm'

• Plastic hardenIng coeffiCient H. l '" "l00 . _ .. J
mm'
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Fig. 7 Quenchll1g of a pressurized cyitnder temperature evolution at the inside wall.

The same analysis has been performed using a physically unrealistic thermal dilatation
coefficient i:11 = 5 x:I1' The results can be found in Figs 9 and 10. In this situation, the
differences between the unidirectional and bidirectional coupled solutions exhibit clearly
the importance of the thermomechanical coupling terms.

4.2. Solidification tcst
The cylindrical casting of Nishida ct al. (1986) has been analysed. The experiment

consisted of casting commercial purity aluminium into an instrumented steel mould. The

0
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~ •6 • •

•
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~
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;J
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N II eJ
c [j
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100 200. 300 400. 500. 600. 700. 800. 900. 1000.

TIME [5]

Fig. S Quenching 01 a pressurized cylinder' radial displacement evolutIOn at the inside wall.
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FIg. 9 Quenching of a pressurized cylinder: temperature evolution at the inside wall for
i:h = 5 C(~h'

analysis begins when the mould is completely filled with aluminium in the liquid state,
where the initial temperatures are assumed to be 6700 e for the casting and 200Ge for the
mould. Thermocouples as well as two quartz rods were placed in the mould wall and in the
mould cavity [see Fig. Il(a)) in order to measure temperature and radial displacement
evolutions. respectively. Geometrical data and thermocouple locations are displayed in Fig.
ll(b).
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Fig. ]0 Quenching of a pressurized cylinder: radial displacement evolution at the inside wall for
i~h = 5 ct;h'



665
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~~~;
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The temperature-dependent thermal and mechanical properties of aluminium are
shown in Tables 3 and 4. respectively. It should be noted that for this class of aluminium.
only an isothermal liquid solid phase-change can occur leading. therefore. to

f:~ = H( T - fill) in this case. The steel is assumed to have constant thermal and mechanical
properties (see Tables 5 and 6). The convection radiallon coefficient of the metal-mould
interface is gap-dependent (see Table 7).while the contact properties between aluminium
and steel can be found in Table 8. It should be noted that a frictionless condition has been
considered for simplicity. Moreover. the gravity force is the only external force acting on
the casting and mould.

The finite clement meshes used in the numerical analysis of this problem can be seen
in Fig. 12. The Ilrst of them [Fig. 12(a)] is a 20 mesh composed of 225 linear triangular
axisymmetric elements. Moreo\er. assuming that all the state variables depend exclusively
on the radial direction and time. It is possible to choose a horizontal slice at the mid­
height of the mould for numerical analysis [sec e.g. Celentano (1994); Celentano eI al.
(1994) : Smelser and Richmond (1988)]. This simplt1ica tive assumption allows. therefore.
the use of a 20 strip [Fig. 12(b)] containing 42 four-noded bilinear axisymmetric clements
and a quarter of a 3D ~trip [Fig. 12(el] discreti/ed with nearlv 600 linear tetrahedral
elements.
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Table 4. Mechanical properties of aluminium

667

• Young's Modulus'

E(T) x 10" [MPaJ
6.93
354

I[ Cj
2' .0

~OO.O

• Poisson's ratio. \ = o.r
• Thermal dilatatIOn coelhnent

~~h(T) x 10" [+l
nl9
n~6

3023
3036
3012

J[CI

2:'.0
.,00.0
400.0
h5l)l)

hhO I

• Thermal hardenmg functIon

'(,'h(T) [MPa]
4930
001

I[ CI
25.0

hhOO

• Plastic hardening coeffiCient If, = 0.0 [M Pa]

The variations of E( n. 1;, (n and 'f, 'hi T) have been assumed to be piecewise linear within the mentioned
temperatures.

Table 5. Thermal properties of steel

[
kg]• Dens!t\ /), = 7~500 ;;,-;

• Spcnfic heat capacity: (' = 0.1,20 l kcal ]
kg C

• ConductiVJt\ coet1lcient . k = 00 I0'1 [ ~~a~ ]

Table 6. Mechal1lcal properties of steel

• Young's Modulus' E = 1'1.4 x ]()' [MPaJ
• Poisson's ratIo \' OJO

• Thermal dilatation coefficient 1;, c 120 x III [~;]

• Thermal hardcnll1g function 'f,'h ~ 210.0 [MPa)
• PlastiC hardening coefficient: H, = 00 [MPa]

Table 7 Thermal propertIes orthe castmg­
mould interface

• ConvcctlOn-radiation coeffiCient.

II [. kcal.]
m s (

11.7
{I.I

gap [mm]

00
>0

Table ~ Mechanical properties of the castll1g~mould interface

• 1\ormal asperity stiffness' E" = 10.0'" [MPa:m]
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I ii". I; S"ildiliCeili,'n (,',I !c'll1pcrell ltt'c c\ "Iuu"n al Ihe center or the casting,

Systcm ()l)aj has becn solvcd uSll1g thc Be numcrical strategy with a time step of 5 s,
In addition to thc featurcs already Cl)mmcntcd. this fact implics that the energy equation
has been solvcd considering thc coupling thcrmomcchanical terms and taking into account
the changes in thc thermal boundary conditions duc to the radial displaccmcnts of the
specimcn.

Thc tempcraturc cvolutiom ~lt ditlcrcnt points of thc mcsh arc plotted in Figs 13-17,
Thc phase-changc effects in thc casting can casily be appreciated, Excellent agreement
between the numerical results and the experimental ones is obtained,

Figurc IX shows the evolutlOIl of thc radial displacemcnt at the cxtcrnal aluminium
surfacc, Similarly. Fig, 19 plots the ~amc e\olution for a point situated at the inner mould
surface, Once more. a good agreement is found between thc expcrimcntal and numerical
results, Further. the progressive change in contact conditions. causing the convection­
radiation cocfticient to decrease signItic<ll1tly. can clearly be noted in the radial gap evolution
depicted in Fig, ~o,

The numerical rcsults ~h()\\ n III Ilg~ 1:-; ~o lhing the three meshes of Fig, 12 show that
the simpliflcatiw assumption mcntioned abovc seems to be relatively good [fact already
notcd by Cclentano 1'1 ill. (1l)l)4) and Smclser and Richmond (I9XX)],

,l\lthough linear intcrpolation clcments havc bcen uscd in the analysis [Fig, 12(a) and
12(cj]. the well-knO\\n volumctric locking ctlcct on the numerical solution [scc e,g, Hughes
(InO)] for the liquid phase doe, 11llt occur because the material is assumed to be com­
pressible (the hulk modulus has a fil1lte \alue) during the whole cooling process, Further­
more. knowing that in the prcscnt formubtion tr 1:

11 = 0 (tr is the trace symbol), even with
tr c = () (typical locking: when conSidering Cl infinite bulk modulus [sce e,g, Hughes (1980)],
the constraint tr 1= () is not satlS/ied due to thc thermal deformations, i,e, tr I: = 3 CI::h

[T· T,,).
Finally. it is Important to emphClsilC th,tt the usuClI "numerical trick" of increasing the

thermal dilatation coeffieicnt in tlK' liquid pha~e in ordcr to ohtain morc realistic dis­
placemcnt c\olutions [,ce cg:, Smcl,er and Richmond (1l)88)] is not neccssary in this model
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due to the full volumetric bcha\iour of the matenal 111 this phase given the constitutive
equation (42).

" COI\CLlSIO"S

A thermomechanicalmodel to simulate the soliditication problem of casted metals has
been presented. The modeL based 011 thermodynamic principles. takes into account different
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states uf thc sultdit'ying material b:- intruducing: a new phase-change function into the
ddinitilln llf the constitutive tensor. somc internal plastic variables and a temperature­
dependcnt constitutive law. Besides. full thermomechanicaJ coupling terms and variable
mechanical and thermal boundary cunditions have been considered.

The model has been implemented in a finite element code. An enhanced staggered
scheme has been used III order to sulve the highly non-linear fully coupled finite element
cLJuatiOlh Finally. the numerical examples analysed show the robustness of the approach.

Furthcr research in this field by the Cluthors includes an extension of the model to

accuunt I'ur micro I11Clcro cvolutiun la\\·s. the use of mixing theory to model casting of
cumplex alloys and thc implementation or different numerical strategies to enhance even
morc thc c()st-c1lectin~nessuf the numcrical solution.

Ii 1,II'iI. !,,/(j(/1I1'1!( I rhi' \\ lilt hi" heen part,.,II\ ,uppllrkd hy Renault. under contract no. CIMNE;
III H'.] ~.(,l)' Tlic' ,Uppllrl I'ro\ided h\ Ilrltc t malll ['wicL·t no. BE-4596 undcr contract no. BREU-0443 is
;1]..;P gr~ltc(ull~ ~lch:llln,\lcdgL'd
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